Thursday, 4 January 2018

Automated Blood Cancer Detection Using Image Processing Matlab Project

ABSTRACT

        Blood cancer is the most prevalent and it is very much dangerous among all type of cancers. Early detection of blood cancer has the potential to reduce mortality and morbidity. There are many diagnostic technologies and tests to diagnose blood cancer. However many of these tests are extremely complex and subjective and depend heavily on the experience of the technician. To obviate these problems, image processing techniques and a fuzzy inference system is use in this study as promising modalities for detection of different types of blood cancer. The accuracy rate of the diagnosis of blood cancer by using the fuzzy system will be yield a slightly higher rate of accuracy then other traditional methods and will reduce the effort and time. We first discuss the preliminary of cell biology required to proceed to implement our proposed method. This project presents a new automated approach for blood Cancer detection and analysis from a given photograph of patient’s cancer affected blood sample. The proposed method is using Wavelet Transformation for image improvement, image segmentation for segmenting the different cells of blood, edge detection for detecting the boundary, size, and shape of the cells and finally Fuzzy Inference System for Final decision of blood cancer based on the number of different cells.

PROJECT OUTPUT


PROJECT VIDEO

Contact:  
Prof. Roshan P. Helonde
Mobile / WhatsApp:+91-7276355704
Email: roshanphelonde@rediffmail.com

0 comments:

Post a Comment

Total Pageviews

CONTACT US

Prof. Roshan P. Helonde
Mobile / WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Contact Form

Name

Email *

Message *

Archive

Notes Planet Copyright 2018. Powered by Blogger.